
Package: ICompELM (via r-universe)
August 20, 2024

Type Package

Title Independent Component Analysis Based Extreme Learning Machine

Version 0.1.0

Description Single Layer Feed-forward Neural networks (SLFNs) have
many applications in various fields of statistical modelling,
especially for time-series forecasting. However, there are some
major disadvantages of training such networks via the widely
accepted 'gradient-based backpropagation' algorithm, such as
convergence to local minima, dependencies on learning rate and
large training time. These concerns were addressed by Huang et
al. (2006) <doi:10.1016/j.neucom.2005.12.126>, wherein they
introduced the Extreme Learning Machine (ELM), an extremely
fast learning algorithm for SLFNs which randomly chooses the
weights connecting input and hidden nodes and analytically
determines the output weights of SLFNs. It shows good
generalized performance, but is still subject to a high degree
of randomness. To mitigate this issue, this package uses a
dimensionality reduction technique given in Hyvarinen (1999)
<doi:10.1109/72.761722>, namely, the Independent Component
Analysis (ICA) to determine the input-hidden connections and
thus, remove any sort of randomness from the algorithm. This
leads to a robust, fast and stable ELM model. Using functions
within this package, the proposed model can also be compared
with an existing alternative based on the Principal Component
Analysis (PCA) algorithm given by Pearson (1901)
<doi:10.1080/14786440109462720>, i.e., the PCA based ELM model
given by Castano et al. (2013) <doi:10.1007/s11063-012-9253-x>,
from which the implemented ICA based algorithm is greatly
inspired.

Imports stats, tsutils, ica

Suggests forecast

Depends R (>= 3.5.0)

License GPL-3

Encoding UTF-8

1

https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1109/72.761722
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1007/s11063-012-9253-x

2 ica.elm_forecast

LazyData true

RoxygenNote 7.3.1

NeedsCompilation no

Author Saikath Das [aut, cre], Ranjit Kumar Paul [aut], Md Yeasin
[aut], Amrit Kumar Paul [aut]

Maintainer Saikath Das <saikathdas007@gmail.com>

Date/Publication 2024-06-10 17:00:14 UTC

Repository https://saikathd.r-universe.dev

RemoteUrl https://github.com/cran/ICompELM

RemoteRef HEAD

RemoteSha f4ce1eed58cb94d4e4f359824ae1fbe64cc87ec4

Contents
ica.elm_forecast . 2
ica.elm_train . 3
pca.elm_forecast . 5
pca.elm_train . 6
price . 8

Index 9

ica.elm_forecast Forecasting from ICA based ELM model

Description

Forecasts are generated recursively from a trained Extreme Learning Machine built using Indepen-
dent Component Analysis.

Usage

ica.elm_forecast(ica.elm_model, h = 1)

Arguments

ica.elm_model A trained ICA based ELM model.

h Number of periods for forecasting. Defaults to one-step ahead forecast.

Value

Vector of point forecasts.

ica.elm_train 3

See Also

ica.elm_train() for training an ICA based ELM model.

Examples

train_set <- head(price, 12*12)
test_set <- tail(price, 12)
ica.model <- ica.elm_train(train_data = train_set, lags = 12)
y_hat <- ica.elm_forecast(ica.elm_model = ica.model, h = length(test_set))
Evaluation of the forecasts
if(require("forecast")) forecast::accuracy(y_hat, test_set)

ica.elm_train Training of ICA based ELM model for time series forecasting

Description

An Extreme Learning Machine is trained by utilizing the concept of Independent Component Anal-
ysis.

Usage

ica.elm_train(train_data, lags, comps = lags, bias = TRUE, actfun = "sig")

Arguments

train_data A univariate time series data.

lags Number of lags to be considered.

comps Number of independent components to be considered. Corresponds to number
of hidden nodes. Defaults to maximum value, i.e., lags.

bias Whether to include bias term while computing output weights. Defaults to TRUE.

actfun Activation function for the hidden layer. Defaults to sig. See Activation functions.

Details

An Extreme Learning Machine (ELM) is trained wherein the weights connecting the input layer and
hidden layer are obtained using Independent Component Analysis (ICA), instead of being chosen
randomly. The number of hidden nodes is determined by the number of independent components.

Value

A list containing the trained ICA-ELM model with the following components.

inp_weights Weights connecting the input layer to hidden layer, obtained from the unmixing
matrix W of ICA. The columns represent the hidden nodes while rows represent
input nodes.

out_weights Weights connecting the hidden layer to output layer.

4 ica.elm_train

fitted.values Fitted values of the model.

residuals Residuals of the model.

h.out A data frame containing the hidden layer outputs (activation function applied)
with columns representing hidden nodes and rows representing observations.

data The univariate ts data used for training the model.

lags Number of lags used during training.

comps Number of independent components considered for training. It determines the
number of hidden nodes.

bias Whether bias node was included during training.

actfun Activation function for the hidden layer. See Activation functions.

Activation functions

The activation function for the hidden layer must be one of the following.

sig Sigmoid function: (1 + e−x)−1

radbas Radial basis function: e−x2

hardlim Hard-limit function:

{
1, if x ≥ 0

0, if x < 0

hardlims Symmetric hard-limit function:

{
1, if x ≥ 0

−1, if x < 0

satlins Symmetric saturating linear function:

1, if x ≥ 1

x, if − 1 < x < 1

−1, if x ≤ −1

tansig Tan-sigmoid function: 2(1 + e−2x)−1 − 1

tribas Triangular basis function:

{
1− |x|, if − 1 ≤ x ≤ 1

0, otherwise

poslin Postive linear function:

{
x, if x ≥ 0

0, otherwise

References

Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: theory and applications.
Neurocomputing, 70(1-3), 489-501. doi:10.1016/j.neucom.2005.12.126.

Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis.
IEEE transactions on Neural Networks, 10(3), 626-634. doi:10.1109/72.761722.

See Also

ica.elm_forecast() for forecasting from trained ICA based ELM model.

doi:10.1016/j.neucom.2005.12.126
doi:10.1109/72.761722

pca.elm_forecast 5

Examples

train_set <- head(price, 12*12)
ica.model <- ica.elm_train(train_data = train_set, lags = 12)

pca.elm_forecast Forecasting from PCA based ELM model

Description

Forecasts are generated recursively from a trained Extreme Learning Machine built using Principal
Component Analysis.

Usage

pca.elm_forecast(pca.elm_model, h = 1)

Arguments

pca.elm_model A trained PCA based ELM model.

h Number of periods for forecasting. Defaults to one-step ahead forecast.

Value

Vector of point forecasts.

See Also

pca.elm_train() for training an ICA based ELM model.

Examples

train_set <- head(price, 12*12)
test_set <- tail(price, 12)
pca.model <- pca.elm_train(train_data = train_set, lags = 12)
y_hat <- pca.elm_forecast(pca.elm_model = pca.model, h = length(test_set))
Evaluation of the forecasts
if(require("forecast")) forecast::accuracy(y_hat, test_set)

6 pca.elm_train

pca.elm_train Training of PCA based ELM model for time series forecasting

Description

An Extreme Learning Machine is trained by utilizing the concept of Principal Component Analysis.

Usage

pca.elm_train(
train_data,
lags,
comps = lags,
center = TRUE,
scale = TRUE,
bias = TRUE,
actfun = "sig"

)

Arguments

train_data A univariate time series data.

lags Number of lags to be considered.

comps Number of independent components to be considered. Corresponds to number
of hidden nodes. Defaults to maximum value, i.e., lags.

center Whether to compute PCA on mean-adjusted data.

scale Whether to compute PCA on variance-adjusted data.

bias Whether to include bias term while computing output weights. Defaults to TRUE.

actfun Activation function for the hidden layer. Defaults to sig. See Activation functions.

Details

An Extreme Learning Machine (ELM) is trained wherein the weights connecting the input layer
and hidden layer are obtained using Principal Component Analysis (PCA), instead of being chosen
randomly. The number of hidden nodes is determined by the number of principal components.

Value

A list containing the trained ICA-ELM model with the following components.

inp_weights Weights connecting the input layer to hidden layer, obtained from the unmixing
matrix W of ICA. The columns represent the hidden nodes while rows represent
input nodes.

out_weights Weights connecting the hidden layer to output layer.

fitted.values Fitted values of the model.

pca.elm_train 7

residuals Residuals of the model.

h.out A data frame containing the hidden layer outputs (activation function applied)
with columns representing hidden nodes and rows representing observations.

data The univariate ts data used for training the model.

lags Number of lags used during training.

comps Number of independent components considered for training. It determines the
number of hidden nodes.

center Whether the input data was mean-adjusted during training.

scale Whether the input data was variance-adjusted during training.

bias Whether bias node was included during training.

actfun Activation function for the hidden layer. See Activation functions.

Activation functions

The activation function for the hidden layer must be one of the following.

sig Sigmoid function: (1 + e−x)−1

radbas Radial basis function: e−x2

hardlim Hard-limit function:

{
1, if x ≥ 0

0, if x < 0

hardlims Symmetric hard-limit function:

{
1, if x ≥ 0

−1, if x < 0

satlins Symmetric saturating linear function:

1, if x ≥ 1

x, if − 1 < x < 1

−1, if x ≤ −1

tansig Tan-sigmoid function: 2(1 + e−2x)−1 − 1

tribas Triangular basis function:

{
1− |x|, if − 1 ≤ x ≤ 1

0, otherwise

poslin Postive linear function:

{
x, if x ≥ 0

0, otherwise

References

Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin philosophical magazine and journal of science, 2(11), 559-572.
doi:10.1080/14786440109462720.

Castaño, A., Fernández-Navarro, F., & Hervás-Martínez, C. (2013). PCA-ELM: a robust and
pruned extreme learning machine approach based on principal component analysis. Neural pro-
cessing letters, 37, 377-392. doi:10.1007/s11063-012-9253-x.

See Also

pca.elm_forecast() for forecasing from trained PCA based ELM model.

doi:10.1080/14786440109462720
doi:10.1007/s11063-012-9253-x

8 price

Examples

train_set <- head(price, 12*12)
pca.model <- pca.elm_train(train_data = train_set, lags = 12)

price Aggregate gram price data

Description

National aggregate price of gram from Indian markets, which is a major pulse in the country. The
observations range from January, 2010 upto December, 2023.

Usage

price

Format

A ts object with 156 observations.

Source

https://www.agmarknet.gov.in/

Examples

plot(price, xlab = "Year", ylab = "Aggregate price of Gram (Rs./Bag)")

https://www.agmarknet.gov.in/

Index

∗ data
price, 8

ica.elm_forecast, 2
ica.elm_forecast(), 4
ica.elm_train, 3
ica.elm_train(), 3

pca.elm_forecast, 5
pca.elm_forecast(), 7
pca.elm_train, 6
pca.elm_train(), 5
price, 8

9

	ica.elm_forecast
	ica.elm_train
	pca.elm_forecast
	pca.elm_train
	price
	Index

